Top
IDG Contributor Network: Recognizing and solving for AI bias – ANITH
fade
197581
post-template-default,single,single-post,postid-197581,single-format-standard,eltd-core-1.1.1,flow child-child-ver-1.0.0,flow-ver-1.3.6,eltd-smooth-scroll,eltd-smooth-page-transitions,ajax,eltd-blog-installed,page-template-blog-standard,eltd-header-standard,eltd-fixed-on-scroll,eltd-default-mobile-header,eltd-sticky-up-mobile-header,eltd-dropdown-default,wpb-js-composer js-comp-ver-5.0.1,vc_responsive

IDG Contributor Network: Recognizing and solving for AI bias

IDG Contributor Network: Recognizing and solving for AI bias

Today, artificial intelligence (AI) is helping us uncover new insight from data and enhance human decision-making. For instance, we use facial recognition to sign into our cell phones, and voice comprehension and intent analytics to get assistance. E-commerce retailers work with AI to predict and recommend new products to consumers. Banks use conversational AI to reduce fraud and better manage client experiences.

Most of the AI that is in use today is narrow AI. General AI, which is more akin to human intelligence and can span a very broad range of decisions, emotions, and judgement, will not be here anytime soon. Narrow AI, which is here today, is actually very good at specific tasks, but “narrowness,” by definition, can introduce some limitations, making it prone to bias.   

To read this article in full, please click here

Source link

Anith Gopal
No Comments

Post a Comment

3 + sixteen =

This site uses Akismet to reduce spam. Learn how your comment data is processed.